
A Jumpstart Guide For Next-Gen
Salesforce Testing

Powered By

Performance of Quality Assurance deliverables like end-to-end testing and test automation remained a focused
area for a long time for Salesforce. Getting it right requires a subtly refined approach, and context is crucial in
choosing the right path in the present day. The dynamic nature of the platform, driven by both by Salesforce’s
expansion of the platform and customizations to meet business requirements, inherently involves many
challenges and innovative approaches.

QualityKiosk’s Salesforce Testing reference article provides a snapshot of paradigm shift in the test strategies as
per technological advances. This came out after our exhaustive interaction with Salesforce professionals from IT
and Business teams of the clients we delivered, to gain current expectations, challenges and best practices for
this leading cloud-based application.

Code-Centered Acceptance Testin
Salesforce includes complex business logic such as
flows that rely on countless components under the
hood. Apex code can be used to test these
processes takes longer timelines.

User Interface (UI) Testing
Tools that simulate the behaviour of a user on a
browser can validate if the system is working as
expected.

Application Programming Interface
(API) Testing
This type of test validates that APIs are responsive
and return the expected information. API testing
targets can provide precise verification of specific
network calls.

Regression Testing
Any change to code or configuration could
undermine existing functionality. These changes
and updates are often seamless, but failures can
remain undetected for weeks or months without
regression testing.

Integration Testing - SIT (System
Integration)
End-to-end functionality hinges on multiple
systems working together in harmony. Integration
testing makes sure business processes that involve
multiple systems are firing on all cylinders.

User Acceptance Testing (UAT)
Actual end users need to verify that new
functionality will meet their needs before it is
deployed to production. UAT is often a final step
before rolling out changes to all users.

Sanity Testing (Production)
Business users are required to check if the deployed
features in production environment are working as
per the requirements and as usual things are
working.

Security Testing

The main goal of Security Testing and Evaluation
(ST&E) is to identify the threats to the system and
measure potential vulnerabilities so they cannot be
exploited. It is the examination and analysis of the
safeguards required to protect an information
system as they have been applied in an operational
environment that helps organizations steer clear of
costly security breaches. Its pressing need to have a
Secure Development Lifecycle (SDL) to build
security into a product or application at every step
in the process. (“Get to Know Security Testing and
Evaluation - Trailhead”).

Performance Testing (PT)
It assesses system performance in terms of
sensitivity, reactivity, and stability under specific
workloads. Evaluating the performance and
scalability of Salesforce applications to handle large
user loads and concurrent transactions can be
complex, especially in organizations with a high
volume of users. Common Salesforce performance
testing enlisted as below:

 • Measuring the Salesforce user
 experience
 When you measure user experience use
 Experienced Page Time (EPT). EPT is
 designed to consider the underlying
 architecture of Salesforce Lightning pages.
 • Server-side metrics
 EPT is measured from the client’s
 perspective, but that’s only half of the
 story. Salesforce is hosted by a robust
 infrastructure. You can gain insight into

how Salesforce is performing on the server
side during a test run with Shield Event Monitoring.

There are a large number of metrics that are
enabled with event monitoring. As a best practice,
consider starting with the following:

 • Run Time (RUN_TIME): What was the total
 amount of time for the request?

 • CPU Time (CPU_TIME): How much time is
 spent in the application tier?

 • Database CPU Time (DB_CPU_TIME): How
 much time is spent in the database tier?

 • Database Total Time (DB_TOTAL_TIME):
 How much time does it take to make a
 database call?

The event types supported by event monitoring are
stored in the EventLogFile standard object and their
individual schemas.

Stitching Events Together
During a test run, you may need to associate
multiple events together to get a full picture of what
is happening. You can relate events to each other by
using the fields USER_ID, SESSION_KEY,
LOGIN_KEY, and REQUEST_ID. USER_ID,
SESSION_KEY, and LOGIN_KEY can be used to
associate events performed by a specific user or
during a specific web session, REQUEST_ID is used

to associate events that are generated by a
front-end request back to the Salesforce Platform.

Two important performance testing metrics in
Salesforce testing are throughput and response
time. Throughput Systems are built to perform work
for users. The number of units of work the system
can process in an amount of time is called
throughput. When measuring throughput, higher
numbers are better.

 • The number of records like Accounts,
 orders, service requests or cases created in
 a minute. The number of searches
 completed per hour.

 • The number of product views on a
 community pages per day.

Response Time
Response time is the amount of time it takes for the
system to process a request. You want systems to
have the highest possible throughout with the
lowest possible response time. Examples of
response time in Salesforce are:

 • The number of milliseconds to create an
 order.

 • The number of milliseconds to load the
 account record page.

1. Executive Summary
An Era of Low-Code Business Transformation
A drift towards easy-to-adapt development platforms for over a decade led to a mandate for low-code
environments, starting from SMBs, due to the perpetual shortage of technical developers and the time with rapid
innovations. In fact, the cardinal reason to Salesforce’s success is a low-code model of development that makes it
easier and faster for everyone in the process to build mission-critical apps.

Rapid innovation necessitates scalable end-to-end testing, which remains a challenge for many:

 • Teams struggle with time to test scoped changes before every release

 • Production issues due to inadequate testing

 • Relies on manual testing for in-sprint stories

Even teams claiming to be agile often adhere to fixed timeframes like sprints — which can function like mini
waterfall projects. This approach squeezes testing to the end of the process, turning into “Water- Scrum-Fall”

 1 Executive Summary

 2 Salesforce Testing Challenges

 3 Testing Strategies & Approaches

 4 Testing Types & Methodologies

 5 Salesforce Automation Testing

 6 DevOps Integration

Table of Contents

This manual is created to achieve four major objectives:
• Analyze current testing processes

• Measure the impact of quality

• Identify key challenges & recommendations

• Adoption of automation & value realization

Timed Cloud Releases
Salesforce has seasonal releases for rolling out
new features in the spring, summer, and winter.
This is exciting for letting users take advantage of
new innovations, it could mean more for testing
teams.
Because platform changes can often break existing
features, proper testing objectives need to be
recalibrated to detect and fix issues.

Highly Customized And Deeply
Integrated With Other Tools
Salesforce AppExchange o�ers range of
integrations, which allow organizations to rapidly
incorporate new functionality into the Salesforce
deployments, leading to additional complexity in
testing.

Adaptive Software Maintenance
Salesforce Lightning leverages many dynamic
elements, such as locators or test web pages, which
can be di�cult to test. That is because choosing a
location to test is challenging when that location is
always changing, like UI/UX changes.

Table-Heavy Platform By Design
Testers may need to leverage multiple tests to
validate data and ensure data communication
happens as per product development.

Trained QA Experts
Though Salesforce is a user-friendly platform, it
does not compliment the testing in similar way.
Even some of the most accessible tools will require
a certain amount of training.

2. Factors That Make Salesforce Testing Challenging

Code-Centered Acceptance Testin
Salesforce includes complex business logic such as
flows that rely on countless components under the
hood. Apex code can be used to test these
processes takes longer timelines.

User Interface (UI) Testing
Tools that simulate the behaviour of a user on a
browser can validate if the system is working as
expected.

Application Programming Interface
(API) Testing
This type of test validates that APIs are responsive
and return the expected information. API testing
targets can provide precise verification of specific
network calls.

Regression Testing
Any change to code or configuration could
undermine existing functionality. These changes
and updates are often seamless, but failures can
remain undetected for weeks or months without
regression testing.

Integration Testing - SIT (System
Integration)
End-to-end functionality hinges on multiple
systems working together in harmony. Integration
testing makes sure business processes that involve
multiple systems are firing on all cylinders.

User Acceptance Testing (UAT)
Actual end users need to verify that new
functionality will meet their needs before it is
deployed to production. UAT is often a final step
before rolling out changes to all users.

Sanity Testing (Production)
Business users are required to check if the deployed
features in production environment are working as
per the requirements and as usual things are
working.

Security Testing
The main goal of Security Testing and Evaluation
(ST&E) is to identify the threats to the system and
measure potential vulnerabilities so they cannot be
exploited. It is the examination and analysis of the
safeguards required to protect an information
system as they have been applied in an operational
environment that helps organizations steer clear of
costly security breaches. Its pressing need to have a
Secure Development Lifecycle (SDL) to build
security into a product or application at every step
in the process. (“Get to Know Security Testing and
Evaluation - Trailhead”).

Performance Testing (PT)
It assesses system performance in terms of
sensitivity, reactivity, and stability under specific
workloads. Evaluating the performance and
scalability of Salesforce applications to handle large
user loads and concurrent transactions can be
complex, especially in organizations with a high
volume of users. Common Salesforce performance
testing enlisted as below:

• Measuring the Salesforce user
experience
When you measure user experience use
Experienced Page Time (EPT). EPT is
designed to consider the underlying
architecture of Salesforce Lightning pages.

• Server-side metrics
EPT is measured from the client’s
perspective, but that’s only half of the
story. Salesforce is hosted by a robust
infrastructure. You can gain insight into

how Salesforce is performing on the server
side during a test run with Shield Event Monitoring.

There are a large number of metrics that are
enabled with event monitoring. As a best practice,
consider starting with the following:

• Run Time (RUN_TIME): What was the total
amount of time for the request?

• CPU Time (CPU_TIME): How much time is
spent in the application tier?

• Database CPU Time (DB_CPU_TIME): How
much time is spent in the database tier?

• Database Total Time (DB_TOTAL_TIME):
How much time does it take to make a
database call?

The event types supported by event monitoring are
stored in the EventLogFile standard object and their
individual schemas.

Stitching Events Together
During a test run, you may need to associate
multiple events together to get a full picture of what
is happening. You can relate events to each other by
using the fields USER_ID, SESSION_KEY,
LOGIN_KEY, and REQUEST_ID. USER_ID,
SESSION_KEY, and LOGIN_KEY can be used to
associate events performed by a specific user or
during a specific web session, REQUEST_ID is used

to associate events that are generated by a
front-end request back to the Salesforce Platform.

Two important performance testing metrics in
Salesforce testing are throughput and response
time. Throughput Systems are built to perform work
for users. The number of units of work the system
can process in an amount of time is called
throughput. When measuring throughput, higher
numbers are better.

• The number of records like Accounts,
orders, service requests or cases created in
a minute. The number of searches
completed per hour.

• The number of product views on a
community pages per day.

Response Time
Response time is the amount of time it takes for the
system to process a request. You want systems to
have the highest possible throughout with the
lowest possible response time. Examples of
response time in Salesforce are:

• The number of milliseconds to create an
order.

• The number of milliseconds to load the
account record page.

1x
4x

10x

40x

640x
850%

% Defects Injection % Defects Found Cost to repair defect

CODING UNIT TEST FUNCTIONAL TEST SYSTEM TEST RELEASE

Applied Software Measurement: Global Analysis of Productivity and Quality. Caper Jones McGraw-Hill Education.2008

Key Terminologies for
Salesforce Testing
Salesforce Objects
The platform stores data in relational tables. The
records in these tables contain data for the structure
and user-created data. In Salesforce, objects can be
classified into three main categories:

• Standard Objects These are the type of
objects for any enterprise e.g., users,
contacts, case, leads, service request etc.

• Custom Objects These are the objects
created based on the business processes.

• External Objects The objects which
developers create a map to the data stored
for integration.

Reports
It is a list of records that meet a particular criterion or
condition which gives an answer to a particular
question. These records are displayed as a table
that can be filtered or grouped, based on any field.

Dashboards
It is graphical notation of the reports, which shows
data from source reports as visual components for
charts, graphs, and tabular data.

VisualForce
visual control center that providesthe ability to
gather multiple languages and controls under one
single tab, aiding in intuitive development and
administration.

Apex
It is a programming language of Salesforce.
Developers leverage it to develop custom SaaS

(Software as a Service) applications using the
framework.

Governor Limits
Salesforce imposes limits on the number of
operations and resources that can be used in a
single transaction. These limits can impact test
scenarios that involve complex workflows or data
processing.
If a Salesforce Governor Limit is exceeded, the
associated governor issues a runtime exception that
cannot be handled. In other words, your code
breaks and will not function.

Well-known verifiable governor limits with Apex
programming are

• SOQL 100 Limit A tester should verify if
apex class execute anonymous script
can ‘only’ have 100 SELECT statements per
apex transaction, check if “Anonymous
Error” appear on exceeding limit.

• SOQL 100 Limit Fix This requires testing if
the SOQL statement in a for loop, it will hit
the governor limit, which is considered one
of the ‘venial sin’ in Apex programming

DML 150 Limit
Developers in their unit testing should try to test
with the use of DML statement inside for loops and
check if give anonymous error. A DML operation on
a collection, it only counts as one DML, this can be
verification point. Additionally, AggregateResult and
di�erent collections updates the Description field on
the Account object with the value of the number of
Account event records.

3. Test Strategies for
Salesforce
Salesforce testing in a nutshell, involves testing of
enterprise deployments to ensure the product
development activities are seamless & function as
expected. There are three main facets to this.

As per our experiences, the Salesforce platform is
utilized by companies to create bespoke,
customized applications for clients’ unique needs,
the product needs to be tested to ensure proper
performance and reliability. Through testing, testers
validate whether custom development or
customized application work as expected and can
support the purpose behind the customizations.
This includes both functional and
non-functional testing.

Secondly, testing strategies are expected to deliver
on all the integrations work as expected. These
pplications can range from 3rd party provided

solutions to proprietary applications for Oder
management, Transport management, Customer
Service etc. All these integrations need thorough
testing to ensure optimum performance and
reliability.

Also, to ensure good coverage it is imperative to test
the custom deployment to ensure none of the
features or functionality break or get a�ected in any
way because of the normal or ad hocreleases. This
involves creating a UAT (User Acceptance Testing)
testing of the scenarios as per business scenarios or
product backlog as per plan.

An e�ective testing strategy cover experiences for
both internal and external customers while

accounting for the looming risk of end-to-end
changes. The right strategy will measure user risk
against the costs and capabilities of a testing team
to find the most e�cient way to execute objectives.

• What are the testing dependencies
(cross-functional)?

• How critical to the business is this scenario?

• How often could changes undermine that?

• How likely is that functionality to break?

• How long does it take to manually test?

• How likely are we to forget or run out of
time to test?

Code-Centered Acceptance Testin
Salesforce includes complex business logic such as
flows that rely on countless components under the
hood. Apex code can be used to test these
processes takes longer timelines.

User Interface (UI) Testing
Tools that simulate the behaviour of a user on a
browser can validate if the system is working as
expected.

Application Programming Interface
(API) Testing
This type of test validates that APIs are responsive
and return the expected information. API testing
targets can provide precise verification of specific
network calls.

Regression Testing
Any change to code or configuration could
undermine existing functionality. These changes
and updates are often seamless, but failures can
remain undetected for weeks or months without
regression testing.

Integration Testing - SIT (System
Integration)
End-to-end functionality hinges on multiple
systems working together in harmony. Integration
testing makes sure business processes that involve
multiple systems are firing on all cylinders.

User Acceptance Testing (UAT)
Actual end users need to verify that new
functionality will meet their needs before it is
deployed to production. UAT is often a final step
before rolling out changes to all users.

Sanity Testing (Production)
Business users are required to check if the deployed
features in production environment are working as
per the requirements and as usual things are
working.

Security Testing
The main goal of Security Testing and Evaluation
(ST&E) is to identify the threats to the system and
measure potential vulnerabilities so they cannot be
exploited. It is the examination and analysis of the
safeguards required to protect an information
system as they have been applied in an operational
environment that helps organizations steer clear of
costly security breaches. Its pressing need to have a
Secure Development Lifecycle (SDL) to build
security into a product or application at every step
in the process. (“Get to Know Security Testing and
Evaluation - Trailhead”).

Performance Testing (PT)
It assesses system performance in terms of
sensitivity, reactivity, and stability under specific
workloads. Evaluating the performance and
scalability of Salesforce applications to handle large
user loads and concurrent transactions can be
complex, especially in organizations with a high
volume of users. Common Salesforce performance
testing enlisted as below:

• Measuring the Salesforce user
experience
When you measure user experience use
Experienced Page Time (EPT). EPT is
designed to consider the underlying
architecture of Salesforce Lightning pages.

• Server-side metrics
EPT is measured from the client’s
perspective, but that’s only half of the
story. Salesforce is hosted by a robust
infrastructure. You can gain insight into

how Salesforce is performing on the server
side during a test run with Shield Event Monitoring.

There are a large number of metrics that are
enabled with event monitoring. As a best practice,
consider starting with the following:

• Run Time (RUN_TIME): What was the total
amount of time for the request?

• CPU Time (CPU_TIME): How much time is
spent in the application tier?

• Database CPU Time (DB_CPU_TIME): How
much time is spent in the database tier?

• Database Total Time (DB_TOTAL_TIME):
How much time does it take to make a
database call?

The event types supported by event monitoring are
stored in the EventLogFile standard object and their
individual schemas.

Stitching Events Together
During a test run, you may need to associate
multiple events together to get a full picture of what
is happening. You can relate events to each other by
using the fields USER_ID, SESSION_KEY,
LOGIN_KEY, and REQUEST_ID. USER_ID,
SESSION_KEY, and LOGIN_KEY can be used to
associate events performed by a specific user or
during a specific web session, REQUEST_ID is used

to associate events that are generated by a
front-end request back to the Salesforce Platform.

Two important performance testing metrics in
Salesforce testing are throughput and response
time. Throughput Systems are built to perform work
for users. The number of units of work the system
can process in an amount of time is called
throughput. When measuring throughput, higher
numbers are better.

• The number of records like Accounts,
orders, service requests or cases created in
a minute. The number of searches
completed per hour.

• The number of product views on a
community pages per day.

Response Time
Response time is the amount of time it takes for the
system to process a request. You want systems to
have the highest possible throughout with the
lowest possible response time. Examples of
response time in Salesforce are:

• The number of milliseconds to create an
order.

• The number of milliseconds to load the
account record page.

Case untagged
To View this table,
refresh the dashboard

Cases by Priority
25x
20x

Re
co

rd
 C

ou
nt

View Report (Case by Priority)

High

37

21k

5

Medium Low
Priority

15x
10x
5x
0

Casee by Origin

4.2k

8.5k 13k

17k

Aged Case by Account

Abanti M Mukherjee

Largest Age
0 20

35
10

2
14

19
38

40 60

Abheek Sarkar
Abhinaya Murugesan

Alkjila Goliala Update
Ajit L

VisualForce
visual control center that providesthe ability to
gather multiple languages and controls under one
single tab, aiding in intuitive development and
administration.

Apex
It is a programming language of Salesforce.
Developers leverage it to develop custom SaaS

(Software as a Service) applications using the
framework.

Governor Limits
Salesforce imposes limits on the number of
operations and resources that can be used in a
single transaction. These limits can impact test
scenarios that involve complex workflows or data
processing.
If a Salesforce Governor Limit is exceeded, the
associated governor issues a runtime exception that
cannot be handled. In other words, your code
breaks and will not function.

Well-known verifiable governor limits with Apex
programming are

• SOQL 100 Limit A tester should verify if
apex class execute anonymous script
can ‘only’ have 100 SELECT statements per
apex transaction, check if “Anonymous
Error” appear on exceeding limit.

• SOQL 100 Limit Fix This requires testing if
the SOQL statement in a for loop, it will hit
the governor limit, which is considered one
of the ‘venial sin’ in Apex programming

DML 150 Limit
Developers in their unit testing should try to test
with the use of DML statement inside for loops and
check if give anonymous error. A DML operation on
a collection, it only counts as one DML, this can be
verification point. Additionally, AggregateResult and
di�erent collections updates the Description field on
the Account object with the value of the number of
Account event records.

3. Test Strategies for
Salesforce
Salesforce testing in a nutshell, involves testing of
enterprise deployments to ensure the product
development activities are seamless & function as
expected. There are three main facets to this.

As per our experiences, the Salesforce platform is
utilized by companies to create bespoke,
customized applications for clients’ unique needs,
the product needs to be tested to ensure proper
performance and reliability. Through testing, testers
validate whether custom development or
customized application work as expected and can
support the purpose behind the customizations.
This includes both functional and
non-functional testing.

Secondly, testing strategies are expected to deliver
on all the integrations work as expected. These
pplications can range from 3rd party provided

solutions to proprietary applications for Oder
management, Transport management, Customer
Service etc. All these integrations need thorough
testing to ensure optimum performance and
reliability.

Also, to ensure good coverage it is imperative to test
the custom deployment to ensure none of the
features or functionality break or get a�ected in any
way because of the normal or ad hocreleases. This
involves creating a UAT (User Acceptance Testing)
testing of the scenarios as per business scenarios or
product backlog as per plan.

An e�ective testing strategy cover experiences for
both internal and external customers while

4. Salesforce Testing Types
As in today’s dynamic world due to intense competition in certain segments like e-commerce, media, and
pharmaceuticals, the release cycles are squeezed never like before. So, during the testing process, QA teams
might feel the need to pursue many di�erent testing approaches as below:

Customer & Products
End-to-end user journeys

for all possible types of
Customers and Products

Customization
Testing of customized

Salesforce functionalities,
integrated applications as
per business requirement

accounting for the looming risk of end-to-end
changes. The right strategy will measure user risk
against the costs and capabilities of a testing team
to find the most e�cient way to execute objectives.

• What are the testing dependencies
(cross-functional)?

• How critical to the business is this scenario?

• How often could changes undermine that?

• How likely is that functionality to break?

• How long does it take to manually test?

• How likely are we to forget or run out of
time to test?

• Indigenous Salesforce Testing covers testing
options already available in the framework,
Unit testing integrated into the Developer
Console. This includes, di�erent modes of data
creation & storage, creation of test classes, and
code coverage solutions.

• Exploratory Salesforce Testing (including data
consistency validation, UI testing, user
input validation, cross-browser compatibility
testing, error message validation, reports and
dashboard testing, flow testing, and ntegration
testing).

• Manual Testing (functional testing, regression
testing, integration testing & happy path
testing).

• Automated Salesforce Testing: This has taken
a center stage in Salesforce testing. A proper
Salesforce automated testing can deliver
reliable, scalable results while e�ciently
managing the resources of QA teams, though
the due to dynamic nature of SFDC pages as
robust test automation framework remains a
challenge. Let us peek into the various testing
types required across landscape.

Code-Centered Acceptance Testin
Salesforce includes complex business logic such as
flows that rely on countless components under the
hood. Apex code can be used to test these
processes takes longer timelines.

User Interface (UI) Testing
Tools that simulate the behaviour of a user on a
browser can validate if the system is working as
expected.

Application Programming Interface
(API) Testing
This type of test validates that APIs are responsive
and return the expected information. API testing
targets can provide precise verification of specific
network calls.

Regression Testing
Any change to code or configuration could
undermine existing functionality. These changes
and updates are often seamless, but failures can
remain undetected for weeks or months without
regression testing.

Integration Testing - SIT (System
Integration)
End-to-end functionality hinges on multiple
systems working together in harmony. Integration
testing makes sure business processes that involve
multiple systems are firing on all cylinders.

User Acceptance Testing (UAT)
Actual end users need to verify that new
functionality will meet their needs before it is
deployed to production. UAT is often a final step
before rolling out changes to all users.

Sanity Testing (Production)
Business users are required to check if the deployed
features in production environment are working as
per the requirements and as usual things are
working.

Security Testing
The main goal of Security Testing and Evaluation
(ST&E) is to identify the threats to the system and
measure potential vulnerabilities so they cannot be
exploited. It is the examination and analysis of the
safeguards required to protect an information
system as they have been applied in an operational
environment that helps organizations steer clear of
costly security breaches. Its pressing need to have a
Secure Development Lifecycle (SDL) to build
security into a product or application at every step
in the process. (“Get to Know Security Testing and
Evaluation - Trailhead”).

Performance Testing (PT)
It assesses system performance in terms of
sensitivity, reactivity, and stability under specific
workloads. Evaluating the performance and
scalability of Salesforce applications to handle large
user loads and concurrent transactions can be
complex, especially in organizations with a high
volume of users. Common Salesforce performance
testing enlisted as below:

• Measuring the Salesforce user
experience
When you measure user experience use
Experienced Page Time (EPT). EPT is
designed to consider the underlying
architecture of Salesforce Lightning pages.

• Server-side metrics
EPT is measured from the client’s
perspective, but that’s only half of the
story. Salesforce is hosted by a robust
infrastructure. You can gain insight into

how Salesforce is performing on the server
side during a test run with Shield Event Monitoring.

There are a large number of metrics that are
enabled with event monitoring. As a best practice,
consider starting with the following:

• Run Time (RUN_TIME): What was the total
amount of time for the request?

• CPU Time (CPU_TIME): How much time is
spent in the application tier?

• Database CPU Time (DB_CPU_TIME): How
much time is spent in the database tier?

• Database Total Time (DB_TOTAL_TIME):
How much time does it take to make a
database call?

The event types supported by event monitoring are
stored in the EventLogFile standard object and their
individual schemas.

Stitching Events Together
During a test run, you may need to associate
multiple events together to get a full picture of what
is happening. You can relate events to each other by
using the fields USER_ID, SESSION_KEY,
LOGIN_KEY, and REQUEST_ID. USER_ID,
SESSION_KEY, and LOGIN_KEY can be used to
associate events performed by a specific user or
during a specific web session, REQUEST_ID is used

to associate events that are generated by a
front-end request back to the Salesforce Platform.

Two important performance testing metrics in
Salesforce testing are throughput and response
time. Throughput Systems are built to perform work
for users. The number of units of work the system
can process in an amount of time is called
throughput. When measuring throughput, higher
numbers are better.

• The number of records like Accounts,
orders, service requests or cases created in
a minute. The number of searches
completed per hour.

• The number of product views on a
community pages per day.

Response Time
Response time is the amount of time it takes for the
system to process a request. You want systems to
have the highest possible throughout with the
lowest possible response time. Examples of
response time in Salesforce are:

• The number of milliseconds to create an
order.

• The number of milliseconds to load the
account record page.

Configuration
Configuration w.r.t.

validation rules, formula
fields, reports & notifications

Integration
Testing of integrated

interfaces and external APIs
for pre-configured modules

Data Flows
Dealing with all the

data types like master &
transactional data

Custom Workflow
Testing of custom

workflows and
business processes

Unit Testing Code Review
System
& Integration
Testing

User Acceptance
Testing

Performance
Testing

Data Migration
Testing

Live

System & Integration Testing

Code-Centered Acceptance Testin
Salesforce includes complex business logic such as
flows that rely on countless components under the
hood. Apex code can be used to test these
processes takes longer timelines.

User Interface (UI) Testing
Tools that simulate the behaviour of a user on a
browser can validate if the system is working as
expected.

Application Programming Interface
(API) Testing
This type of test validates that APIs are responsive
and return the expected information. API testing
targets can provide precise verification of specific
network calls.

Regression Testing
Any change to code or configuration could
undermine existing functionality. These changes
and updates are often seamless, but failures can
remain undetected for weeks or months without
regression testing.

Integration Testing - SIT (System
Integration)
End-to-end functionality hinges on multiple
systems working together in harmony. Integration
testing makes sure business processes that involve
multiple systems are firing on all cylinders.

User Acceptance Testing (UAT)
Actual end users need to verify that new
functionality will meet their needs before it is
deployed to production. UAT is often a final step
before rolling out changes to all users.

Sanity Testing (Production)
Business users are required to check if the deployed
features in production environment are working as
per the requirements and as usual things are
working.

Security Testing
The main goal of Security Testing and Evaluation
(ST&E) is to identify the threats to the system and
measure potential vulnerabilities so they cannot be
exploited. It is the examination and analysis of the
safeguards required to protect an information
system as they have been applied in an operational
environment that helps organizations steer clear of
costly security breaches. Its pressing need to have a
Secure Development Lifecycle (SDL) to build
security into a product or application at every step
in the process. (“Get to Know Security Testing and
Evaluation - Trailhead”).

Performance Testing (PT)
It assesses system performance in terms of
sensitivity, reactivity, and stability under specific
workloads. Evaluating the performance and
scalability of Salesforce applications to handle large
user loads and concurrent transactions can be
complex, especially in organizations with a high
volume of users. Common Salesforce performance
testing enlisted as below:

• Measuring the Salesforce user
experience
When you measure user experience use
Experienced Page Time (EPT). EPT is
designed to consider the underlying
architecture of Salesforce Lightning pages.

• Server-side metrics
EPT is measured from the client’s
perspective, but that’s only half of the
story. Salesforce is hosted by a robust
infrastructure. You can gain insight into

how Salesforce is performing on the server
side during a test run with Shield Event Monitoring.

There are a large number of metrics that are
enabled with event monitoring. As a best practice,
consider starting with the following:

• Run Time (RUN_TIME): What was the total
amount of time for the request?

• CPU Time (CPU_TIME): How much time is
spent in the application tier?

• Database CPU Time (DB_CPU_TIME): How
much time is spent in the database tier?

• Database Total Time (DB_TOTAL_TIME):
How much time does it take to make a
database call?

The event types supported by event monitoring are
stored in the EventLogFile standard object and their
individual schemas.

Stitching Events Together
During a test run, you may need to associate
multiple events together to get a full picture of what
is happening. You can relate events to each other by
using the fields USER_ID, SESSION_KEY,
LOGIN_KEY, and REQUEST_ID. USER_ID,
SESSION_KEY, and LOGIN_KEY can be used to
associate events performed by a specific user or
during a specific web session, REQUEST_ID is used

to associate events that are generated by a
front-end request back to the Salesforce Platform.

Two important performance testing metrics in
Salesforce testing are throughput and response
time. Throughput Systems are built to perform work
for users. The number of units of work the system
can process in an amount of time is called
throughput. When measuring throughput, higher
numbers are better.

• The number of records like Accounts,
orders, service requests or cases created in
a minute. The number of searches
completed per hour.

• The number of product views on a
community pages per day.

Response Time
Response time is the amount of time it takes for the
system to process a request. You want systems to
have the highest possible throughout with the
lowest possible response time. Examples of
response time in Salesforce are:

• The number of milliseconds to create an
order.

• The number of milliseconds to load the
account record page.

Code-Centered Acceptance Testin
Salesforce includes complex business logic such as
flows that rely on countless components under the
hood. Apex code can be used to test these
processes takes longer timelines.

User Interface (UI) Testing
Tools that simulate the behaviour of a user on a
browser can validate if the system is working as
expected.

Application Programming Interface
(API) Testing
This type of test validates that APIs are responsive
and return the expected information. API testing
targets can provide precise verification of specific
network calls.

Regression Testing
Any change to code or configuration could
undermine existing functionality. These changes
and updates are often seamless, but failures can
remain undetected for weeks or months without
regression testing.

Integration Testing - SIT (System
Integration)
End-to-end functionality hinges on multiple
systems working together in harmony. Integration
testing makes sure business processes that involve
multiple systems are firing on all cylinders.

User Acceptance Testing (UAT)
Actual end users need to verify that new
functionality will meet their needs before it is
deployed to production. UAT is often a final step
before rolling out changes to all users.

Sanity Testing (Production)
Business users are required to check if the deployed
features in production environment are working as
per the requirements and as usual things are
working.

Security Testing
The main goal of Security Testing and Evaluation
(ST&E) is to identify the threats to the system and
measure potential vulnerabilities so they cannot be
exploited. It is the examination and analysis of the
safeguards required to protect an information
system as they have been applied in an operational
environment that helps organizations steer clear of
costly security breaches. Its pressing need to have a
Secure Development Lifecycle (SDL) to build
security into a product or application at every step
in the process. (“Get to Know Security Testing and
Evaluation - Trailhead”).

Performance Testing (PT)
It assesses system performance in terms of
sensitivity, reactivity, and stability under specific
workloads. Evaluating the performance and
scalability of Salesforce applications to handle large
user loads and concurrent transactions can be
complex, especially in organizations with a high
volume of users. Common Salesforce performance
testing enlisted as below:

• Measuring the Salesforce user
experience
When you measure user experience use
Experienced Page Time (EPT). EPT is
designed to consider the underlying
architecture of Salesforce Lightning pages.

• Server-side metrics
EPT is measured from the client’s
perspective, but that’s only half of the
story. Salesforce is hosted by a robust
infrastructure. You can gain insight into

how Salesforce is performing on the server
side during a test run with Shield Event Monitoring.

There are a large number of metrics that are
enabled with event monitoring. As a best practice,
consider starting with the following:

• Run Time (RUN_TIME): What was the total
amount of time for the request?

• CPU Time (CPU_TIME): How much time is
spent in the application tier?

• Database CPU Time (DB_CPU_TIME): How
much time is spent in the database tier?

• Database Total Time (DB_TOTAL_TIME):
How much time does it take to make a
database call?

The event types supported by event monitoring are
stored in the EventLogFile standard object and their
individual schemas.

Stitching Events Together
During a test run, you may need to associate
multiple events together to get a full picture of what
is happening. You can relate events to each other by
using the fields USER_ID, SESSION_KEY,
LOGIN_KEY, and REQUEST_ID. USER_ID,
SESSION_KEY, and LOGIN_KEY can be used to
associate events performed by a specific user or
during a specific web session, REQUEST_ID is used

Login Event
Captured

User
Logs In

Loads
Lightning Page

Updated
a Record

User Logs
Out

Lighting Event
Captured

Apex Execution
Event Captured

Logout Event
Captured

Login Key, User ID, Session ID

Request
ID

to associate events that are generated by a
front-end request back to the Salesforce Platform.

Two important performance testing metrics in
Salesforce testing are throughput and response
time. Throughput Systems are built to perform work
for users. The number of units of work the system
can process in an amount of time is called
throughput. When measuring throughput, higher
numbers are better.

• The number of records like Accounts,
orders, service requests or cases created in
a minute. The number of searches
completed per hour.

• The number of product views on a
community pages per day.

Response Time
Response time is the amount of time it takes for the
system to process a request. You want systems to
have the highest possible throughout with the
lowest possible response time. Examples of
response time in Salesforce are:

• The number of milliseconds to create an
order.

• The number of milliseconds to load the
account record page.

 Mobile Testing
• Cross-Platform Compatibility: Tester must

verify application on various operating
system to check the screen size &
resolution for expected user experience.
di�erent OS (Android, IOS, Symbian,
Windows, etc.) but also in di�erent versions
of the same OS (like Android Nougat (7.0),
Oreo (8.0), etc.).

• Settings and Configurations Check: The
app should be compatible with all the
settings & configurations of di�erent mobile
devices.

• Test Cases Base creation w.r.t to App
types: Mobile apps are classified as web,
native & hybrid. Web apps should be tested
to ensure the UI is working & mobile apps
have limited storage, test the memory
utilization with battery usage.

• End-to End Consistency UI Testing:
 Front-end testing encapsulates the
validation the UI of the app & the
functionality of the mobile app graphic user

5. Salesforce Test Automation
Automated testing enables fast and reliable test scripts via low- code platforms are the e�ective way to slash the
cost of investment and reduce business risk. Repetitive tasks can be automated - freeing up users to focus on
core work; exploratory testing, understanding the scope of testing from PO/Developers etc., test case design to
ensure complete coverage, analysing test plans, communicating with users and more.

Based on our delivery experiences, testing remains the biggest bottleneck in the process of digital transformation.
Clients across industries are still using traditional testing methods such as manual testing or script-based
approaches. As a result, teams lack the time to test changes before deployments and the release quality su�ers.
Test automation can relieve some of the pressure on the quality assurance (QA) team.

However, we have also observed a growing shift from manual testing to automated testing, which has significant
outcomes for teams leveraging the potential of automation:

• Fewer production failures after each release

• More frequent release (bi-monthly/weekly)

• Better completion of testing for each release

• Lower TCO (Total Costs of Ownership)

Adopting the low-code approach accelerates development. With Salesforce managing the underlying
infrastructure, faster software cycles result in more changes and updates, potentially leading to unexpected
surprises.

The development of mobile apps is expected to be swift and reliable, so testing automation is at the core of the
apps. Testing strategy. It ensures that the mobile application covers customer expectations and business
objectives. But the testing has its own challenges on the cost optimization along with expectations to support
various types of mobile devices, and operating systems like Android, iOS, and Windows.

To address mobile testing and its recurring activities, because of multiple OS upgrades, the launch of new device
models, new releases to remain competitive on mobile features, etc., automation using e�ective tools can be
leveraged with the following advantages.

Code-Centered Acceptance Testin
Salesforce includes complex business logic such as
flows that rely on countless components under the
hood. Apex code can be used to test these
processes takes longer timelines.

User Interface (UI) Testing
Tools that simulate the behaviour of a user on a
browser can validate if the system is working as
expected.

Application Programming Interface
(API) Testing
This type of test validates that APIs are responsive
and return the expected information. API testing
targets can provide precise verification of specific
network calls.

Regression Testing
Any change to code or configuration could
undermine existing functionality. These changes
and updates are often seamless, but failures can
remain undetected for weeks or months without
regression testing.

Integration Testing - SIT (System
Integration)
End-to-end functionality hinges on multiple
systems working together in harmony. Integration
testing makes sure business processes that involve
multiple systems are firing on all cylinders.

User Acceptance Testing (UAT)
Actual end users need to verify that new
functionality will meet their needs before it is
deployed to production. UAT is often a final step
before rolling out changes to all users.

Sanity Testing (Production)
Business users are required to check if the deployed
features in production environment are working as
per the requirements and as usual things are
working.

Security Testing
The main goal of Security Testing and Evaluation
(ST&E) is to identify the threats to the system and
measure potential vulnerabilities so they cannot be
exploited. It is the examination and analysis of the
safeguards required to protect an information
system as they have been applied in an operational
environment that helps organizations steer clear of
costly security breaches. Its pressing need to have a
Secure Development Lifecycle (SDL) to build
security into a product or application at every step
in the process. (“Get to Know Security Testing and
Evaluation - Trailhead”).

Performance Testing (PT)
It assesses system performance in terms of
sensitivity, reactivity, and stability under specific
workloads. Evaluating the performance and
scalability of Salesforce applications to handle large
user loads and concurrent transactions can be
complex, especially in organizations with a high
volume of users. Common Salesforce performance
testing enlisted as below:

• Measuring the Salesforce user
experience
When you measure user experience use
Experienced Page Time (EPT). EPT is
designed to consider the underlying
architecture of Salesforce Lightning pages.

• Server-side metrics
EPT is measured from the client’s
perspective, but that’s only half of the
story. Salesforce is hosted by a robust
infrastructure. You can gain insight into

how Salesforce is performing on the server
side during a test run with Shield Event Monitoring.

There are a large number of metrics that are
enabled with event monitoring. As a best practice,
consider starting with the following:

• Run Time (RUN_TIME): What was the total
amount of time for the request?

• CPU Time (CPU_TIME): How much time is
spent in the application tier?

• Database CPU Time (DB_CPU_TIME): How
much time is spent in the database tier?

• Database Total Time (DB_TOTAL_TIME):
How much time does it take to make a
database call?

The event types supported by event monitoring are
stored in the EventLogFile standard object and their
individual schemas.

Stitching Events Together
During a test run, you may need to associate
multiple events together to get a full picture of what
is happening. You can relate events to each other by
using the fields USER_ID, SESSION_KEY,
LOGIN_KEY, and REQUEST_ID. USER_ID,
SESSION_KEY, and LOGIN_KEY can be used to
associate events performed by a specific user or
during a specific web session, REQUEST_ID is used

to associate events that are generated by a
front-end request back to the Salesforce Platform.

Two important performance testing metrics in
Salesforce testing are throughput and response
time. Throughput Systems are built to perform work
for users. The number of units of work the system
can process in an amount of time is called
throughput. When measuring throughput, higher
numbers are better.

• The number of records like Accounts,
orders, service requests or cases created in
a minute. The number of searches
completed per hour.

• The number of product views on a
community pages per day.

Response Time
Response time is the amount of time it takes for the
system to process a request. You want systems to
have the highest possible throughout with the
lowest possible response time. Examples of
response time in Salesforce are:

• The number of milliseconds to create an
order.

• The number of milliseconds to load the
account record page.

interface. This test includes a drop-down
menu, navigation features, and other
features that are used by the end user.

• Memory utilization & storage Test: Test
the storage should be optimum on
download of multiple apps.

• Network types of behaviour on Apps:
Performance even under weak network
signals or large data transitions. Jitters,
Packet loss, Network Speed.

 • Security Testing: Source code & database,
Perform input validation, Penetration test,
client-side injection, check TTPS-SSL/TLA
security layer, local data storage.

 • Geolocation Testing: Localization test
intends to validate, globally operating
software to provide linguistic and cultural
relevance. It is a technique to verify
software behaviour, accuracy, and
suitability for specific locations and regions.

Code-Centered Acceptance Testin
Salesforce includes complex business logic such as
flows that rely on countless components under the
hood. Apex code can be used to test these
processes takes longer timelines.

User Interface (UI) Testing
Tools that simulate the behaviour of a user on a
browser can validate if the system is working as
expected.

Application Programming Interface
(API) Testing
This type of test validates that APIs are responsive
and return the expected information. API testing
targets can provide precise verification of specific
network calls.

Regression Testing
Any change to code or configuration could
undermine existing functionality. These changes
and updates are often seamless, but failures can
remain undetected for weeks or months without
regression testing.

Integration Testing - SIT (System
Integration)
End-to-end functionality hinges on multiple
systems working together in harmony. Integration
testing makes sure business processes that involve
multiple systems are firing on all cylinders.

User Acceptance Testing (UAT)
Actual end users need to verify that new
functionality will meet their needs before it is
deployed to production. UAT is often a final step
before rolling out changes to all users.

Sanity Testing (Production)
Business users are required to check if the deployed
features in production environment are working as
per the requirements and as usual things are
working.

Security Testing
The main goal of Security Testing and Evaluation
(ST&E) is to identify the threats to the system and
measure potential vulnerabilities so they cannot be
exploited. It is the examination and analysis of the
safeguards required to protect an information
system as they have been applied in an operational
environment that helps organizations steer clear of
costly security breaches. Its pressing need to have a
Secure Development Lifecycle (SDL) to build
security into a product or application at every step
in the process. (“Get to Know Security Testing and
Evaluation - Trailhead”).

Performance Testing (PT)
It assesses system performance in terms of
sensitivity, reactivity, and stability under specific
workloads. Evaluating the performance and
scalability of Salesforce applications to handle large
user loads and concurrent transactions can be
complex, especially in organizations with a high
volume of users. Common Salesforce performance
testing enlisted as below:

• Measuring the Salesforce user
experience
When you measure user experience use
Experienced Page Time (EPT). EPT is
designed to consider the underlying
architecture of Salesforce Lightning pages.

• Server-side metrics
EPT is measured from the client’s
perspective, but that’s only half of the
story. Salesforce is hosted by a robust
infrastructure. You can gain insight into

how Salesforce is performing on the server
side during a test run with Shield Event Monitoring.

There are a large number of metrics that are
enabled with event monitoring. As a best practice,
consider starting with the following:

• Run Time (RUN_TIME): What was the total
amount of time for the request?

• CPU Time (CPU_TIME): How much time is
spent in the application tier?

• Database CPU Time (DB_CPU_TIME): How
much time is spent in the database tier?

• Database Total Time (DB_TOTAL_TIME):
How much time does it take to make a
database call?

The event types supported by event monitoring are
stored in the EventLogFile standard object and their
individual schemas.

Stitching Events Together
During a test run, you may need to associate
multiple events together to get a full picture of what
is happening. You can relate events to each other by
using the fields USER_ID, SESSION_KEY,
LOGIN_KEY, and REQUEST_ID. USER_ID,
SESSION_KEY, and LOGIN_KEY can be used to
associate events performed by a specific user or
during a specific web session, REQUEST_ID is used

to associate events that are generated by a
front-end request back to the Salesforce Platform.

Two important performance testing metrics in
Salesforce testing are throughput and response
time. Throughput Systems are built to perform work
for users. The number of units of work the system
can process in an amount of time is called
throughput. When measuring throughput, higher
numbers are better.

• The number of records like Accounts,
orders, service requests or cases created in
a minute. The number of searches
completed per hour.

• The number of product views on a
community pages per day.

Response Time
Response time is the amount of time it takes for the
system to process a request. You want systems to
have the highest possible throughout with the
lowest possible response time. Examples of
response time in Salesforce are:

• The number of milliseconds to create an
order.

• The number of milliseconds to load the
account record page.

Codeless test
creation

Supports multiple
languages

 Does not require
source code access

 Supports Android and
iOS-based apps

Incredible
customer support

Support all
actions on screens,

i.e., swipe, pinch,
rotate, tap

Cross-platform
development support

(same code for
Android & iOS device)

User-friendly
UI for testing

activities

6. DevOps Integration for Regression Automation
DevOps for SAAS (Software as a Service) based platform like Salesforce has emerged as one of the hottest
trends in the low-code-No-code ecosystem.

Continuous updating &Integration (CI) of the test suites for regression testing becomes the trends to
catch-up with the watertight timelines.

Automated testing runs minimizes this risk by providing a layer of protection — allowing functionality to be
checked and rechecked many times with minimal human intervention on daily basis. Creating an
automated test requires initial e�ort, but the cost of re-running each test is worth having it. This makes test
automation an ideal solution for high-velocity teams that need fast and consistent testing to prevent
backward regression as they build new capabilities

About QualityKiosk Technologies

QualityKiosk Technologies is one of the world’s largest independent Quality Assurance (QA) providers and digital transformation enablers,
helping companies build and manage applications for optimal performance and user experience. The organization has been featured in
renowned global advisory firms' reports, including Forrester, Gartner, and The Everest Group, for its innovative, IP-led quality assurance
solutions and the positive impact it has created for its clients in the fast-changing digital landscape.

Contact us at letsconnect@qualitykiosk.com for a complimentary consultation on QA transformation and take the first step to
future-proofing your digital transformation.

www.qualitykiosk.comWhatsApp Us: +91 75066 01010

